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Abstract. In recent years, it has been shown that strategies based on an interval-Newton approach
can be used to reliably solve a variety of nonlinear equation solving and optimization problems in
chemical process engineering, including problems in parameter estimation and in the computation
of phase behavior. These strategies provide a mathematical and computational guarantee either that
all solutions have been located in an equation solving problem or that the global optimum has been
found in an optimization problem. The primary drawback to this approach is the potentially high
computational cost. In this paper, we consider strategies for bounding the solution set of the linear
interval equation system that must be solved in the context of the interval-Newton method. Recent
preconditioning techniques for this purpose are reviewed, and a new bounding approach based on
the use of linear programming (LP) techniques is presented. Using this approach it is possible to
determine the desired bounds exactly (within round out), leading to significant overall improvements
in computational efficiency. These techniques will be demonstrated using several global optimization
problems, with focus on problems arising in chemical engineering, including parameter estimation
and molecular modeling. These problems range in size from under ten variables to over two hundred,
and are solved deterministically using the interval methodology.
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1. Introduction

At the core of many mathematical modeling problems is the need to solve a non-
linear model, or to optimize a nonlinear function subject to constraints. In either
case, there may arise issues with the reliability of the problem-solving method
used. For example, if there are multiple solutions to the model, have all been
located? If there are multiple local optima, has the global solution been found?
Interval mathematics can provide themodeler with the tools needed to resolve these
issues with mathematical and computational certainty, thus providing a degree of
problem-solving reliability not available when using standard methods. In recent
years, it has been shown that strategies based on an interval-Newton approach
can be used to reliably solve a wide variety of nonlinear equation solving and
optimization problems in chemical engineering, including computation of fluid
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phase equilibrium from activity coefficient models [21,25], cubic equation-of-state
(EOS) models [8,9,23], and statistical associating fluid theory [29], calculation of
critical points from cubic EOSmodels [24], location of azeotropes [15] and reactive
azeotropes [16], computation of solid-fluid equilibrium [28], parameter estimation
using standard least squares [4] and error-in-variables [3,6], and calculation of
adsorption in nanoscale pores from a density functional theory model [17]. In each
case, the interval approach provides a mathematical and computational guarantee
either that all solutions have been located in a nonlinear equation solving problem
or that the global optimum has been found in an optimization problem.
The primary drawback to this approach is the potentially high computational

cost. One way to improve the efficiency of the interval-Newton approach for
solving a nonlinear equation system is to more tightly bound the solution set of the
linear interval equation system that is at the core of this approach. In this paper,
we review recent preconditioning techniques [5,11,12], for this purpose, and a new
bounding strategy based on the use of linear programming (LP) techniques is pre-
sented. Using this approach it is possible to exactly (within round out) determine
the desired bounds on the solution set of the linear interval system. By providing
tight interval bounds on this solution set, the goal is to more quickly contract inter-
vals that may contain solutions of the nonlinear system, as well as to more quickly
identify intervals that contain a unique solution, and intervals that contain no solu-
tion, thus leading to an overall improvement in computational efficiency. These
techniques will be demonstrated using several global optimization problems, with
focus on problems arising in chemical engineering, including parameter estimation
and molecular modelling.

2. Interval analysis

Several good introductions to interval computations are available [7,10,13,18]. Of
particular interest here is the interval-Newton method. Given an n×n nonlinear
equation system f �x�=0 with a finite number of real roots in some initial interval,
this technique provides the capability to find tight enclosures of all the roots of the
system that lie within the given initial interval. For the unconstrained minimization
of��x�, a common approach is to seek stationary points, that is, to solve the nonlin-
ear equation system f �x�=���x�=0. The global optimum will be one of roots
of this nonlinear equation system, but there may be other roots as well, representing
local optima and saddle points. To identify the global optimum, it is critical that
none of the roots be missed, and such a guarantee can be provided by the interval-
Newton approach. For a constrained optimization problem, the interval-Newton
method can be applied to solve the KKT or Fritz-John conditions.
Given some initial interval X�0�, the interval-Newton solution algorithm is ap-

plied to a sequence of subintervals. For a subinterval X�k� in the sequence, the
first step is the function range test. An interval extension F �X�k�) of the function
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f �x� is calculated. An interval extension provides upper and lower bounds on the
range of values that a function may have in a given interval. It is often computed
by substituting the given interval into the function and then evaluating the function
using interval arithmetic. Thus the interval extension is often wider than the actual
range of function values, but it always includes the actual range. If there is any
component of the interval extension F �X�k�� that does not include zero, then the
interval can be discarded, since no solution of f �x�=0 can exist in this interval.
The next subinterval in the sequence may then be considered. Otherwise, testing of
X�k� continues.
For a global minimization problem, the next step is the objective range test. The

interval extension��X�k��, containing the range of ��x� over X�k� is computed. If
the lower bound of ��X�k�� is greater than a known upper bound on the global
minimum, then X�k� can be discarded since it cannot contain the global minimum
and need not be further tested. In cases that all the stationary points are desired
rather than just the global minimum, this test step can be turned off.
The next step is the interval-Newton test. The linear interval equation system:

F ′�X�k���N �k�−x�k��=−f �x�k��� (1)

is solved for a new interval N �k�, where F ′�X�k�� is an interval extension of the
Jacobian of f �x�, and x�k� is an arbitrary real point in X�k�. It has been shown (e.g.
[7,13,18]) that any root contained in X�k� is also contained in the image N �k�. This
implies that if the intersection between X�k� and N �k� is empty, then no root exists
in X�k�, and also suggests the iteration scheme X�k+1�=X�k�∩N �k�. In addition, it
has also been shown (e.g. [7,13,18]) that, if N �k�⊂X�k�, then there is a unique root
contained in X�k� and thus in N �k�. Thus, after computation of N �k� from Equation
(1), there are three possibilities: (1) X�k�∩N �k�=∅, meaning there is no root in the
current interval X�k� and it can be discarded; (2) N �k�⊂X�k�, meaning that there is
exactly one root in the current interval X�k�; (3) neither of the above, meaning that
no conclusion can be drawn. In the last case, ifX�k�∩N �k� is sufficiently smaller that
X�k�, then the interval-Newton test can be reapplied to the resulting intersection.
Otherwise, the intersection is bisected, and the resulting two subintervals are added
to the sequence of subintervals to be tested. This approach is referred to as an
interval-Newton/generalized-bisection(IN/GB) method. At termination, when the
subintervals in the sequence have all been tested, either all the real roots of f �x�=
0 have been tightly enclosed or it has been determined that no root exists.
Clearly, the solution of the linear interval system given in Equation (1) is essen-

tial to this approach. To see the issues involved in solving such a system, consider
the general linear interval system Az=B, where the matrix A and the right-hand
side vector B are interval-valued. The solution set S of this system is defined by
S=�z	Ãz=b�Ã∈A�b∈B�. However, in general this set is not an interval and
may have a very complex polygonal geometry. Thus, to “solve” the linear interval
system, one instead seeks an interval Z containing S. Computing the interval hull
(the tightest interval containing S) is NP-hard [20], but there are several methods
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for determining an interval Z that contains but overestimates S. Various interval-
Newton methods differ in how they solve Equation (1) for N �k� and thus in the
tightness with which the solution set is enclosed. By obtaining bounds that are as
tight as possible, the overall performance of the interval-Newton approach can be
improved, since with a smaller N �k� the volume of X�k�∩N �k� is reduced, and it
is also more likely that either X�k�∩N �k�=∅ or N �k�⊂X�k� will be satisfied.
Thus, intervals that may contain solutions of the nonlinear system are more quickly
contracted, and intervals that contain no solution or that contain a unique solution
may be more quickly identified, all of which leads to a likely reduction in the
number of bisections needed.
Frequently, N �k� is computed component-wise using an interval Gauss–Seidel

approach, preconditioned with an inverse-midpoint matrix, as described briefly
below. Though the inverse-midpoint preconditioner is a good general-purpose pre-
conditioner, it is not always the most effective approach [11,13]. Recently, a hybrid
preconditioning approach, which combines a simple pivoting preconditioner with
the standard inverse-midpoint scheme, has been proposed by Gau and Stadtherr
[5] and shown to achieve substantially more efficient computational performance
than the inverse-midpoint preconditioner alone. This approach is reviewed in the
next section, since it will be used as the basis for performance comparisons in later
examples (Section 5). However, it still may not yield the tightest enclosure of the
solution set, which, as noted above, is in general an NP-hard problem. In Section
4, a linear programming strategy will be applied to solve the linear interval system,
Equation (1). Using this approach, exact component-wise bounds on the solution
set required in the context of the interval-Newton method can be calculated, while
avoiding exponential time complexity. A similar LP strategy has also been pro-
posed for use in the context of certain types of constraint satisfaction problems
[10].

3. Preconditioning approaches for interval-Newton

In this section, we review preconditioning approaches for solving the interval-
Newton equation, Equation (1). First the standard interval Gauss–Seidel, with in-
verse midpoint preconditioner, is reviewed, and then the hybrid preconditioning
approach of Gau and Stadtherr [5] is discussed.

3.1. INTERVAL GAUSS–SEIDEL

The interval Gauss–Seidel procedure is frequently used to solve Equation (1) for
the image N �k�. The interval-Newton equation is first preconditioned using a real
matrix Y �k�. The preconditioned linear interval equation system can then be ex-
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pressed as

Y �k�F ′�X�k���N �k�−x�k��=−Y �k�f �x�k��� (2)

The preconditioner Y �k� used here is commonly taken to be an inverse-midpoint
preconditioner, which may be either the inverse of the real matrix formed from the
midpoints of the elements of the interval Jacobian F ′�X�k��, or the inverse of the
real matrix determined by evaluating the point Jacobian f ′�x� at the midpoint of
X�k�.
Defining yi as the ith row of the preconditioning matrix and Ai as the ith

column of the interval Jacobian F ′�X�k��, then beginning with X=X�k�, the
interval Gauss–Seidel scheme used in connection with interval-Newton methods
proceeds component by component according to

Ni=xi−
yif �x�+

n∑
j=1�j �=i

yiAj�Xj−xj�

yiAi

(3)

where yiAj indicates the inner product of the real row vector yi and the interval
column vector Aj , and then,

Xi←Xi∩Ni (4)

for i=1�����n. Note that after component Ni of the image is calculated from
Equation (3) that the intersection in Equation (4) is immediately performed, and the
updated Xi then used in the computation of subsequent components of the image.
This means that this procedure actually does not enclose the full solution set of
Equation (1). but only the part of the solution set necessary for the interval-Newton
iteration. Generally, only one pass is made through Equations (3–4) and so after
all the Xi have been updated the result is X=X�k+1�, the next interval-Newton
iterate.

3.2. HYBRID PRECONDITIONING APPROACH

The inverse-midpoint preconditioner is a good general-purpose preconditioner.
However, as demonstrated by Kearfott [11], it is not always the most effective
approach. A hybrid approach in which a simple pivoting preconditoner is used in
combination with the standard inverse-midpoint scheme was thus considered by
Gau and Stadtherr [5]. Their goal was to develop an approach that would signifi-
cantly reduce the number of subintervals that must be tested in the interval-Newton
algorithm, but that could be implemented with little computational overhead, so
that large savings in computation time could be realized.
In a pivoting preconditioner [12], only one element of the preconditioning row

yi, called the pivot element, is nonzero, and it is assigned a value of one. In this
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case, Equation (3) becomes

�Ni�j=xi−
fj�x�+

n∑
k=1�k �=i

Ajk�Xk−xk�

Aji

(5)

where the notation �·�j is used to indicate a quantity that has been evaluated using
element j of yi as the pivot in the pivoting preconditioner. The image component
Ni, and thus the intersection Ni∩Xi, can be manipulated by choosing different
elements j to be the pivot. An appropriate criterion for choosing j is to seek a
preconditioning row yi that minimizes the width of Ni∩Xi, that is, to solve

max
j

w��Ni�j∩Xi� (6)

Since the endpoints of �Ni�j are easily computed [5] from Equation (5), this object-
ive function is also easy to compute. In Gau and Stadtherr’s procedure [5], a pivot
j that results in �Ni�j∩Xi=∅ is first sought. This is called a discarding-optimal
preconditioner, since �Ni�j∩Xi=∅ means that the current interval X being tested
can now be discarded as containing no root. If there is no such pivot, then the
pivot j solving the minimum-width optimization problem given in Equation (6) is
chosen. This is called a contraction-optimal preconditioner.
As already noted, use of the inverse-midpoint preconditioner does not always

result in good performance of the interval-Newton algorithm. The use of a pivoting
preconditioner alone does not always lead to good performance either. Thus, Gau
and Stadtherr [5] adopted a hybrid strategy. The basic idea is that, in determin-
ing a preconditioning row yi, a discarding-optimal pivoting preconditioner is first
searched for, and while doing so, the information needed to pick a contraction-
optimal pivoting preconditioner is also determined. If in fact there is no discarding-
optimal pivoting preconditioner, then either the contraction-optimal pivoting pre-
conditioner or the inverse-midpoint preconditioner is used, depended on which
yields the smaller width of Ni∩Xi. Note that, in determining the endpoints of
�Ni�j for purposes of choosing a pivoting preconditioner according to Equation
(6), the computations can be done cheaply by using real (not interval) arithmetic.
Only when the chosen preconditioning row is actually implemented, in Equation
(3), does interval arithmetic actually need to be used.
The complete algorithm for implementing the hybrid preconditioning scheme

is given in detail by Gau and Stadtherr [5]. Their numerical experiments show that
this approach leads to substantial reductions in computing time requirements, in
many cases by multiple orders of magnitude. They also considered another ap-
proach for improving the computational efficiency of the interval-Newton method.
This involves adjusting the value of the real point x�k�∈X�k� in Equation (1)
to further reduce the width of �Ni�j∩Xi during the selection of the pivoting
preconditioner (x�k�, though typically chosen to be the midpoint ofX�k�, can be any
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point in X�k�). In their numerical experiments, Gau and Stadtherr [5] showed that
this combined hybrid preconditioning/real-point adjustment (HP/RP) scheme yiel-
ded further reductions in computation time compared to the hybrid precondition-
ing scheme alone. This HP/RP scheme will be used as the basis for performance
comparisons in later examples (Section 5).

4. LP strategy for interval-Newton

Consider again the linear interval system Az=B. Oettli and Prager [19] show
that the solution set S is determined by the constraints

	Âz−B̂	��A	z	+�B� (7)

where Â is the component-wise midpoint matrix of the interval matrix A, �A is the
component-wise half-width (radius) matrix of A, and similarly B̂ and �B are the
midpoint and radius B. Equation (7) is not directly useful for computing bounds
on the solution set because of the absolute value operation on the right-hand side.
In general, the solution may lie in all 2n orthants for an n-dimensional problem.
In each orthant, each component of z keeps a constant sign, and thus the absolute
value operation can be dropped, For a given orthant, define the diagonal matrixD�

by

�D��jj=
{

1 zj�0
−1 zj�0

j=1�2�����n� (8)

Thus, in each orthant 	z	=D�z and z=D�	z	, and Equation (7) becomes

	Âz−B̂	��AD�z+�B (9)

This can be rearranged to the set of linear inequalities
(

Â−�AD�

−Â−�AD�

)
z�

(
B
−B

)
� (10)

where the underline and overline denote lower and upper interval bounds, respect-
ively. To determine the tightest interval enclosing the solution set, one can then
solve, in each orthant, the set of 2n optimization problems

max
z
zj� j=1�2�����n (11)

min
z
zj� j=1�2�����n (12)

each with the 2n linear inequality constraints given by Equation (10). These can be
solved using linear programming (LP) techniques. However, in general, there are
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2n orthants and so the solution time complexity will be exponential, as expected
since this problem is known to be NP-hard.
In the context of the interval-Newton method, however, the exponential time

complexity can be avoided. This is because only that part of the solution set of
Equation (1) that intersects X�k� needs to be found. Consider the choice of the real
point x�k� in Equation (1). Here x�x� is an arbitrary point in X�k� typically taken to
be the midpoint. However, if x�k� is chosen to be a corner ofX�k� instead, the part of
the solution set forN �k�−x�k� of Equation (1) that intersectsX�k� lies in just one or-
thant. Thus, in the context of interval-Newton, only 2n LP subproblems, each with
2n constraints, need to be solved. Furthermore, the LP subproblems have properties
that can be exploited. First, all the 2n subproblems share the same constraints; that
is, the same feasible region. Thus, an initial feasible basis for the LP subproblems
needs to be found only once. Second, the objective function of each subproblem
consists of just one variable. This makes the problem much simpler since it is not
necessary, as it is in the general case, to calculate the gain in objective value when
choosing variables to enter and exit the basis.
LISS_LP (Linear Interval System Solver by Linear Programming) is a proced-

ure that we have developed based on the above scheme. This procedure can be used
to replace the inverse-midpoint preconditioned Gauss–Seidel method for solving
Equation (1). It can be combined with the low basis pivoting preconditioner and
optimal real-point scheme [5] discussed above to achieve best performance. The
pivoting preconditioner can also help LISS_LP to select one of the corners ofX�k� to
use as the real point, the choice of which may have significant impact on the overall
performance of LISS_LP. Since the LP subproblems are solved using floating point
arithmetic in the current implementation of LISS_LP, which may cause rounding
error concerns, a practical error bound estimator on the solution of the linear system
was adopted to ensure the reliability of the solution.

5. Results and discussion

In this section, we present the results of numerical experiments to test the ef-
fectiveness of LISS_LP in implementing the interval-Newton approach for global
optimization. To do this we compare LISS_LP to the HP/RP approach of Gau
and Stadtherr [5], which, as noted above, provides substantial improvements in
computational performance over a standard interval-Newton method. The first two
test problems are parameter estimation problems, formulated using the error-in-
variables (EIV) approach, and demonstrate the case in which the number of vari-
ables is relatively large (at least in the context of deterministic global optimization).
The remaining three problems demonstrate the case in which there are a large num-
ber of local minima or other stationary points, including a problem with multiple
global minima, and a molecular modelling problem requiring the location of all
stationary points on a potential energy surface (PES). All tests were performed on
a Sun Blade 1000 model 1600 workstation.
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Table 1. Computational performance
on parameter estimation in VLE
modelling (Problem 1)

HP/RP LISS_LP

I-N tests 303,589 156,182
CPU time 664.4 496.7

5.1. PROBLEM 1

This is a parameter estimation problem using the EIV approach to estimate para-
meters in the van Laar equation for activity coefficients. These two parameters
are estimated from vapour-liquid equilibrium (VLE) data for the binary system
of methanol and 1,2-dichloroethane. The experimental data consist of five experi-
mental data points for four measured state variables, namely pressure, temperature,
and liquid- and vapor-phase mole fraction of methanol. The problem [2,14] is
formulated as an unconstrained global optimization problem with 12 variables, as
explained in [3].
The global optimization problem was solved successfully, with computational

performance results shown in Table 1, where the number of interval-Newton (I-N)
tests performed, and the CPU time in seconds are given.When LISS_LP is applied,
the number of I-N tests is substantially reduced, indicating the effectiveness of
LISS_LP in reducing the number of intervals that must be tested. Essentially, by
reducing the size of N �k�, LISS_LP is able to more quickly identify and discard
intervals that contain no solution. However, the percent reduction in overall CPU
time is less than the percent reduction in I-N tests. This occurs due to the
overhead in solving the LP subproblems.

5.2. PROBLEM 2

This is a parameter estimation problem using the EIV approach to estimate the rat-
ing parameters for a steady-state heat exchanger network, which consists of four
heat exchangers. The four parameters can be estimated from experimental measure-
ments, including six flow measurements and thirteen temperature measurements.
Five versions of the parameter estimation problems were solved, differing in the
number of data points, which ranges from m=4 to m=20. In the optimization
problem, the number of independent variables is 13m+4, and thus ranges from 56
to 264. Detail of the problem [1] can be found in [6].
The global optimization problems were solved successfully, with computational

performance results shown in Table 2. Due to the large number of variables, sparse
linear programming routines were implemented in LISS_LP for these problems.



290 Y. Lin and M.A. Stadtherr

Table 2. Computational performance on parameter estimation in heat exchanger
network modelling (Problem 2)

Data points Variables HP/RP LISS_LP
m n I-N tests CPU time �s� I-N tests CPU time �s�
4 56 1 0.12 2 0.27
8 108 375 211.8 44 38.1
12 160 363 498.6 299 346.0
16 212 188 645.8 83 316.8
20 264 220 1357.3 81 504.9

Both I-N tests and CPU time are substantially reduced when m is large, indicating
the effectiveness of LISS_LP. A 264-variable deterministic global optimization
problem is solved in only about 500 s of CPU time.

5.3. PROBLEM 3

This is a global optimization problem given by Trefethen [26] as part of a set of
challenge problems in which at least 10 digits of precision were required in the final
results. The global minimum of the function

f �x�y� = exp�sin�50x��+sin�60exp�y��+sin�70sin�x��+sin�sin�80y��
−sin�10�x+y��+�x2+y2�/4 (13)

is sought, where x∈ �−1�1� and y∈ �−1�1�. On the unit square ��0�1�×�0�1��
alone, the function has 667 local minima, as well as many other stationary points.
This global optimization problem was solved successfully, with more than 10

digits of precision, with computational performance results as shown in Table 3.
This proves to be a very easy problem to solve using the interval approach. Though
the number of I-N tests is reduced when LISS_LP is used, this is balanced on this
easy problem by the overhead required to solve the LP problems, and thus there
is no overall reduction in CPU time. It appears that, on relatively easy problems,
the LP-based strategy is not needed, but still can be used without significant loss of
efficiency due to LP overhead.
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Table 3. Computational perform-
ance on Trefethen challenge (Prob-
lem 3)

HP LISS_LP
I-N tests 1814 1179
CPU time 0.15 0.16

Table 4. Computational performance on Siirola et al. func-
tion (Problem 4)

Global Minima I-N tests CPU time �s�
LISS_LP 5 155,666 389.17
HP 5 171,918 636.76

5.4. PROBLEM 4

This is to find the global minimum of the function

f �x�=100
N∏
i=1

5∑
j=1

(
j5

4425
cos�j+jxi�

)
+ 1
N

N∑
i=1

�xi−x0�i�2 (14)

where xi∈ �x0�i−20�x0�i+20� and x0�i=3�i=1�����N . This is used as
a test problem by Siirola et al. [22]. The problem is solved here for the case of
N =5, for which there are on the order of a hundred million �108� local minima.
Five global minima exist and are successfully located, with the computational per-
formance results shown in Table 4. For the number of variables in this problem,
the overhead in solving LP subproblems is actually less than the overhead in doing
preconditioned Gauss–Seidel. Therefore, even though the number of I-N tests is
reduced by only about 10% when LISS_LP is used, the overall computational time
is reduced by almost 40%.

5.5. PROBLEM 5

In this final set of examples, we applied the LISS_LP approach to the problem
of finding all stationary points of potential energy surfaces for several triatomic
molecules [27]. This is useful in the study of reaction pathways and transition
states. The Murrel–Sorbie analytic potential energy surface was used. For a tri-
atomic molecule ABC, the geometry of the molecular structure can be described
by the three interatomic distances RAB, RAC, and RBC. The potential energy surface
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(PES) is then represented by a function of the form V �RAB�RAC�RBC�. To find
all the stationary points of this surface then requires finding all solutions of the
stationary conditions

!V/!RAB=0 (15)

!V/!RAC=0 (16)

!V/!RBC=0 (17)

subject to the triangle inequality constraints

RAB�RAC+RBC (18)

RAC�RAB+RBC (19)

RBC�RAB+RAC� (20)

only one of which can be simultaneously active.
When one of the constraints, Equations (18–20), is active then the molecule is

collinear. For example, if the molecule is collinear with atom B is in the middle,
then RAC=RAB+RBC. In this case, the collinearity condition (active constraint)
can be used to eliminate one variable in terms of the other two. Now, for the case
of B in the middle, the stationarity conditions that must be solved are

!

!RAB

V �RAB�RAB+RBC�RBC�=0 (21)

!

!RBC

V �RAB�RAB+RBC�RBC�=0 (22)

with the triangle inequality constraints no longer applicable. There are two other
similar equation systems for the cases of atom A in the middle and C in the middle.
In the nonlinear case in which none of the triangle inequality constraints is

active, then the three stationarity conditions, Equations (15–17), can be solved
and any roots that do not satisfy the inequality constraints discarded. However, we
instead put the constraints to use in a constraint propagation (bound contraction)
scheme, which is done before the function range test. For example, considering the
constraint on RAB if RAB>RAC+RBC, then the upper bound RAB can be contracted
to RAB=RAC+RBC. Furthermore, if RAB>RAC+RBC, then the current subin-
terval can be discarded since it can not satisfy the inequality constraints. Similar
procedures are also applied based on the constraints on RAC and RBC. Using this
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Table 5. Summary of performance of LISS_LP on triatomic
problems (Problem 5)

Problem Stationary points found CPU time �s�
HCN 10 6.66
HSiN 11 1.07
CS2 5 2.18
HBO(PES1) 4 0.88
HBO(PES2) 4 0.56

Table 6. Stationary states for HCN (Problem 5)

Type Energy �eV � RCN (Å) RCH(Å) RNH(Å)
Minimum −5�548223 – 2.332871 1.038900
Saddle 8�094668 – 0.857572 0.806900
Minimum −12�972507 1.159150 – 0.993336
Minimum −13�592215 1.153198 1.065498 –
Saddle −5�249952 2.344235 2.980408 1.044278
Saddle −1�937592 2.311895 1.792854 2.327696
Saddle −3�102483 2.582864 1.081559 2.737335
Saddle −11�444169 1.117973 1.053919 1.387750
Saddle −11�345398 0.929065 1.039138 1.041348
Minimum −11�379410 0.857321 0.980845 0.989052

scheme, stationary points that do not satisfy the inequality constraints are never
found.
To solve the overall problem of finding all the stationary points of the PES, one

must actually solve four subproblems, corresponding to the three collinear cases
and the one noncollinear case. The LISS_LP approach was used successfully to
find all stationary points for the molecules HCN, HSiN, CS2, and HBO. Details of
the analytic potential energy surface for each molecule can be found in [27]. Note
that two different potential energy surfaces for HBO were used. Table 5 shows
the performance of LISS_LP for each of the problems, and the results for the
stationary points are summarized in Tables 6–10, where “–” indicates the long side
of a collinear molecule; these results are consistent with those found in [27] using
a different approach. The initial search region for each distance was [0.7,5.0]Å, as
in [27]. The interval approach using LISS_LP is clearly very effective in solving
these problems.
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Table 7. Stationary states for HSiN (Problem 5)

Type Energy �eV � RSiN (Å) RSiH (Å) RNH (Å)
Saddle 1�109601 2.778074 2.617596 –
Saddle −3�144738 1.523964 2.426268 –
Saddle −5�148745 2.006322 1.361586 –
Minimum −6�098598 1.529588 1.459586 –
Saddle −5�666608 1.575921 – 2.969229
Minimum −9�358509 1.523293 – 0.998205
Maximum 1�720515 2.647092 2.415995 3.498876
Saddle −2�876954 1.501907 2.309780 3.069649
Saddle −4�908995 2.394221 2.137984 0.974496
Saddle −0�728138 2.155741 1.473092 2.044809
Saddle −3�717494 1.461352 1.634575 2.093708

Table 8. Stationary states for CS2 (Problem 5)

Type Energy �eV � RCS (Å) RCS′ (Å) RSS′ (Å)
Saddle −1�668827 2.761779 – 2.695109
Saddle 103�740892 0.949956 – 1.813411
Minimum 97.485407 0.908824 – 1.417728
Minimum −12�004548 1.552422 1.552422 –
Saddle −0�049002 4.171034 4.171034 3.978688

Table 9. Stationary states for HBO with PES1 (Problem 5)

Type Energy �eV � RBH (Å) RBO (Å) ROH (Å)
Saddle −7�598281 3.264082 1.187662 –
Minimum −16�678316 1.165505 1.185028 –
Minimum −6�556670 1.162756 – 2.349430
Saddle −0�216647 – 2.554092 3.688901

6. Concluding remarks

Wehave described here an LP-hard basedmethod to solve the linear interval system
arising in the context of the interval-Newton approach for nonlinear equation solv-
ing and global optimization. The method can obtain tighter bounds on the solution
set than the preconditioned interval Gauss–Seidel approach, and thus leads to a
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Table 10. Stationary states for HBO with PES2 (Problem 5)

Type Energy �eV � RBH (Å) RBO (Å) ROH (Å)
Minimum −16�678851 1.168947 1.184167 –
Minimum −6�639249 1.154136 – 2.344208
Minimum −11�305022 – 1.192047 2.383483
Saddle −11�134196 2.906575 1.185979 2.398381

large reduction in the number of subintervals must be tested during the interval-
Newton procedure. However, the difference between the overhead required to solve
the LP subproblems and that required to perform the preconditioned Gauss–Seidel
method may lead to relatively smaller or larger improvements in overall compu-
tational time, depending on the size of the problem. With sparse linear algebra in
the LP subproblems, the method can be successfully applied to problems involving
over two hundred variables.
We have demonstrated that the interval-Newton approach is a powerful, deter-

ministic approach to the solution of a number of global optimization, as well as
nonlinear equation solving problems, such as arise in chemical engineering and
other areas of engineering and science. Continuing improvements in methodology,
together with advances in software and hardware will make this an increasingly
attractive problem solving tool.

Acknowledgements

This work has been supported in part by the donors of The Petroleum Research
Fund, administered by the ACS, under Grant 35979-AC9, and by the Indiana 21st
Century Research and Technology Fund.

References

1. Biegler, L.T. and Tjoa, I.B. (1993), A parallel implementation for parameter estimation with
implicit models, Anns. Opns. Res.42, 1–23.

2. Esposito, W.R. and Floudas, C.A. (1998), Global optimization in parameter estimiation of
nonlinear algebraic models via the error-in-variables approach, Ind. Eng. Chem. Res. 37,
1841–1858.

3. Gau, C.-Y. and Stadtherr, M.A. (2000), Reliable nonlinear parameter estimation using interval
analysis: error-in-variable approach, Comput. Chem. Eng. 24, 631–638.

4. Gau, C.-Y., Brennecke, J.F. and Stadtherr, M.A. (2000), Reliable parameter estimiation in VLE
modelling, Fluid Phase Equilib. 168, 1–18.

5. Gau , C.-Y. and Stadtherr, M.A. (2002), New interval methodologies for reliable chemical
process modelling, Comput. Chem. Eng. 26, 827–840.

6. Gau , C.-Y. and Stadtherr, M.A. (2002), Deterministic global optimization for error-in-variables
parameter estimation, AIChE J. 48, 1191–1197.

7. Hansen, E.R. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.
8. Hua, J.Z., Brennecke, J.F. and Stadtherr, M.A. (1998), Reliable computation of phase stability

using interval analysis: cubic equation of state models, Comput. Chem. Eng. 22, 1207–1214.
9. Hua, J.Z., Brennecke, J.F. and Stadtherr, M.A. (1998), Enhanced interval analysis for phase

stability: cubic equation of state models, Ind. Eng. Chem. Res. 37, 1519–1527.



296 Y. Lin and M.A. Stadtherr

10. Jaulin, L., Kieffer, M., Didrit, O. and Walter, É. (2001), Applied Interval Analysis, Springer-
Verlag, London.

11. Kearfott, R.B. (1990), Preconditioners for the interval Gauss–Siedel method, SIAM J. Numer.
Anal. 27, 804–822.

12. Kearfott, R.B. (1991), Decompositon of arithmetic expressions to improve the behavior of
interval iteration for nonlinear systems, Computing 47, 169–191.

13. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer Academic
Publishers, Dordrecht.

14. Kim, I., Liebman, M. and Edgar, T. (1990), Robust error-in-variables estimation using nonlinear
programming techniques, AIChE J. 36, 985–993.

15. Maier, R.W., Brennecke, J.F. and Stadtherr, M.A. (1998), Reliable computation of homogen-
eous azeotropes, AIChE J. 44, 1745–1755.

16. Maier, R.W., Brennecke, J.F. and Stadtherr, M.A. (2001), Reliable computation of reactive
azeotropes, Comput. Chem. Eng. 24, 1851–1858.

17. Maier, R.W. and Stadtherr, M.A. (2001), Reliable density-functional-theory calculations of
adsorption in nanoporous materials, AIChE J. 47, 1874–1884.

18. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press,
Cambridge, UK.

19. Oettli, W. and Prager, W. (1964), Compatibility of approximated solution of linear equation
with given error bounds for coefficients and right-hand sides, Numerische Mathenatik, 6, 405–
408.

20. Rohn, J. and Kreinovich, V. (1995), Computing exact componentwise bounds on solution of
linear systems with interval data is NP-hard, SIAM J. Matrix. Anal. 16, 415–420.

21. Schnepper, C.A., Brennecke, J.F. and Stadtherr, M.A. (1995), Robust phase stability analysis
using interval methods, AIChE J. Ser. 91(304), 356–359.

22. Siirola, J.D., Hauen, S. andWesterberg, A.W. (2002), Agent-based Strategies for Multiobjective
Optimization, Paper 265g, Presented at AIChE Annual Meeting, Indianapolis, IN, November
3–8.

23. Stradi, B.A., Xu, G., Brennecke, J.F. and Stadtherr, M.A. (2000), Modelling and design of an
environmentally benign reaction process, AIChE Symp. Ser. 96(323), 371–375.

24. Stradi, B.A., Brennecke, J.F., Kohn, J.P. and Stadtherr, M.A. (2001), Reliable computation of
mixture critical points, AIChE J. 47, 212–221.

25. Tessier, S.R., Brennecke, J.F. and Stadtherr, M.A. (2001), Reliable phase stability analysis for
excess Gibbs energy models, Chem. Eng. Sci. 55, 1785–1796.

26. Trefethen, N. (2002), A hundren-dollar hundred-digit challenge, SIAM News 35(1), 1.
27. Westerberg, K.M. and Floudas, C.A. (1999), Locating all transition states and studying the

reaction pathways of potential energy surfaces, J. Chem. Phys. 110, 9259–9295.
28. Xu, G., Scurto, A.M., Castier, M., Brennecke, J.F. and Stadtherr, M.A. (2000), Reliable

computation of high pressure solid-fluid equilibrium, Ind. Eng. Chem. Res. 39, 1624–1636.
29. Xu, G., Brennecke, J.F. and Stadtherr, M.A. (2002), Reliable computation of phase stability

and equilibrium from the SAFT equation of state, Ind. Eng. Chem. Res. 41, 938–953.


